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Outline

■ High–energy QCD evolution: a classical stochastic process

◆ BFKL evolution =⇒ The rise of the gluon density

◆ Gluon recombination =⇒ Saturation, CGC

◆ Gluon splitting (bremsstrahlung) =⇒ Correlations

■ The Mean Field Approximation (BK equation)

& Its breakdown at high energy.

■ The asymptotic behaviour (s→∞, αs → 0) is universal !

The same universality class as the reaction–diffusion

problem in statistical physics.

■ From recent (1997–2004) results in statistical physics to

exact (asymptotic) results in QCD !

■ How to go beyond ‘asymptotia’ ? See the next coming talks!
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Deep Inelastic Scattering at High Energy

2 ~ 1/  2r Q

q

r

P

γ ∗
Dipole

Proton

■ DIS probes the gluon distribution with a small ‘color dipole’ :

Q2 ∼ 1/r2 � Λ2
QCD , r2 = (x− y)2 : dipole size

■ At high energy, the dipole ‘sees’ a very complicated gluon

configuration
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Deep Inelastic Scattering at High Energy

2 ~ 1/  2r Q

q
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P

γ ∗
Dipole

Proton

■ DIS probes the gluon distribution with a small ‘color dipole’ :

Q2 ∼ 1/r2 � Λ2
QCD , r2 = (x− y)2 : dipole size

■ At high energy, the dipole ‘sees’ a very complicated gluon

configuration ... that we shall now ‘deconstruct’ !
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Lowest order

2r ~ Q1/  2

r

q
Dipole

γ ∗

Proton

P

■ Lowest order process in perturbative QCD :

One–gluon exchange (in the amplitude)
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BFKL Evolution

2 Q 2~ 1/r

r

q
Dipole

γ ∗

Proton

P

.....

■ n ‘small–x’ gluons in the s–channel =⇒ T (n) ∼ (αsY )n/n!

Y ≡ ln 1/x ∼ ln s : ‘rapidity’

■ BFKL equation : TBFKL(r, Y ) ∼ α2
s r2γ eωY

■ Violation of the unitarity bound (T ≤ 1), Infrared diffusion ...
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Gluon Saturation

2r ~ Q 21/

q

r
γ ∗

P

Dipole

Proton

■ High density =⇒ Gluon recombination =⇒ Saturation

■ Unitarity is restored: T (r, Y ) ' 1 for r >
∼ 1/Qs(Y )

■ Saturation momentum: Q2
s(Y ) ∝ eλY

λ = the saturation exponent
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Bremsstrahlung

Q 21/~r2

r

q

γ ∗
Dipole

P

Proton

■ How are the t–channel gluons generated in the first place ?

Through bremsstrahlung in the high–energy evolution !

■ The seed of the higher–point correlations

(=⇒ fluctuations in the number of gluons)

■ Bremsstrahlung + recombination =⇒ ‘Pomeron loops’
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From QCD to Statistical Physics

■ All these phenomena are relevant for the dominant
behaviour at high energy ! (saturation, unitarity)

■ Currently, we know the QCD equations which encode these
phenomena ... but they are complicated !

■ The asymptotic (s→∞) behaviour is insensitive to the
details of the dynamics beyond the BFKL equation

◆ It follows from : the BFKL equation
◆ + the existence of unitarity corrections
◆ + the existence of gluon number fluctuations

E.I., Mueller, Munier, 04

■ The universality of the stochastic process !

⇐⇒ The ‘reaction–diffusion’ problem in statistical physics

chemical reactions, pattern formation, directed percolation,
spreading of epidemics, solar activity, computer science ...
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Reaction–diffusion process A 
 2A

■ Particles of type A distributed on an one-dimensional lattice

◆ Particle splitting (rate α) : A
α
−→ A + A

◆ Particle merging (rate β) : A + A
β
−→ A

◆ A particle can diffuse to a neighboring site

■ At large t, n(x, t) saturates at a value N ≡ α/β � 1

■ N →∞ : h(x, t) = n(x, t)/N obeys the F–KPP equation :

∂th(x, t) = ∂2
xh(x, t)

︸ ︷︷ ︸

diffusion

+ h(x, t)
︸ ︷︷ ︸

growth

− h2(x, t)
︸ ︷︷ ︸

recombination

■ Two fixed points: h = 0 (unstable) and h = 1 (stable)

■ “Traveling wave” : a front propagating into the unstable state

h(x, t) ' F (x− vt) , F (z → −∞)→ 1 , F (z � 1) ∼ e−γz

■ Finite N : Fluctuations in the particle number
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Dipole scattering at high energy

■ Evolution equation for the dipole amplitude (Balitsky, JIMWLK)

∂

∂Y

〈
T (x, y)

〉

Y
=

αsNc

π

∫

z

(x−y)2

(x−z)2(y−z)2
〈

−T (x, y) + T (x, z) + T (z, y)
︸ ︷︷ ︸

BFKL (linear)

+ T (x, z)T (z, y)
︸ ︷︷ ︸

non–linear

〉

Y

■ Non–linear effects 〈T T 〉 ←→ Gluon recombination

■ Fluctuations 〈T T 〉 − 〈T 〉〈T 〉 ←→ Gluon splitting

■ Mean field approximation : 〈T T 〉 ≈ 〈T 〉〈T 〉

=⇒ Non–linear equation for 〈T 〉 : Balitsky–Kovchegov eq.

■ BK eq. : the same universality class as the F–KPP equation

(Munier & Peschanski, 03)

h(x, t) ←→ T (ρ, Y ) , ρ ≡ ln 1/r2 ∼ lnQ2
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BK Equation: The Traveling Wave

■ Two fixed points: T = 0 (unstable) and T = 1 (stable)

◆ Low energy/small dipole =⇒ 〈T 〉 � 1 =⇒ BFKL growth

〈T (r)〉Y ∼ r2γ sω ∼ e−γρ eωY (ρ ≡ ln 1
r2 ∼ ln k2)

◆ High energy/large dipole =⇒ 〈T 〉 → 1 (unitarity limit)

■ When increasing Y , the front propagates towards larger ρ

= γω/ =λ

λ

Y1

Y1
)( ρ

s

λ0 = 4.883...

α s

_
λ0

ρ
s
( Y) = Y

T

ρ

1/2

1
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BK Equation: The Traveling Wave

■ Two fixed points: T = 0 (unstable) and T = 1 (stable)

◆ Low energy/small dipole =⇒ 〈T 〉 � 1 =⇒ BFKL growth

〈T (r)〉Y ∼ r2γ sω ∼ e−γρ eωY (ρ ≡ ln 1
r2 ∼ ln k2)

◆ High energy/large dipole =⇒ 〈T 〉 → 1 (unitarity limit)

■ Saturation scale : ρs(Y ) = λY , with λ = ω/γ (from BFKL !)

2YY1
> Y1

Y1
)( ρ

s

T

ρρ

1/2

1

s
(Y )2
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Geometric Scaling

■ The position of the front =⇒ Saturation momentum

ρs(Y ) ≡ lnQ2
s(Y ) = λY =⇒ Q2

s(Y ) ∝ eλY

■ The shape of the front does not change in the course of the

propagation =⇒ “Geometric scaling"

〈T (ρ, Y )〉 ' F (ρ− ρs(Y )) ≡ F
(
r2Q2

s(Y )
)

(E.I., Itakura, McLerran, 02 ; Mueller, Triantafyllopoulos, 02)

■ A natural explanation for a new scaling law identified

in the HERA data for DIS at small–x

(Staśto, Golec-Biernat, and Kwieciński, 2000)

■ Relevant for the high–pT suppression observed in

deuteron-gold collisions at RHIC

(Kharzeev, Levin, McLerran, 02 ; E.I., Itakura, Triantafyllopoulos, 04)
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Geometric Scaling at HERA

σγ∗p(x, Q2) ≈ σγ∗p(τ) , with τ ≡
Q2

Q2
s(x)

and Q2
s(x) ∼ 1/xλ
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Beyond the Mean Field Approximation

■ Gluon number fluctuations =⇒ 〈T T 〉 − 〈T 〉〈T 〉

■ Ignored by Balitsky–JIMWLK ! (E.I. & Triantafyllopoulos, 04)

■ Important only in the dilute tail at ρ� ρs(Y ) (where T � 1)

■ Front propagation is driven by the BFKL growth in the tail !

Y

Y

Y Y

1

T

1

1

1

T

1/2

 

ρ

1/2

ρ( ) ρ

>2 1

■ The ‘pulled front’ dynamics is very sensitive to fluctuations !

“Fluctuating pulled fronts” (see arXiv:cond–mat after 97)
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Particle number fluctuations
■ At low density, the dipole counts the gluons in the target:

T (r, Y ) ≈ α2
s n(r, Y ) with n(r, Y ) = 0, 1, 2, ...

=⇒ In an event–by–event description, T is discrete !

■ Discreteness modifies the mechanism for front propagation
◆ MFA : BFKL growth in the tail.
◆ Discrete system : Diffusion of gluons in the foremost bin.
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■ As compared to the MFA, the front should slow down !
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Saturation exponent with fluctuations

■ Asymptotic behaviour is universal !

◆ Large ‘evolution time’ Y , i.e. energy→ ∞

◆ High occupancy at saturation (1/α2
s � 1), i.e. α2

s → 0

■ Brunet–Derrida, 97 (for the reaction–diffusion problem)

λs ≡
1

ᾱs

dρs(Y )

dY
≈ λ0 −

C

ln2(1/α2
s)

, λ0 ≈ 4.88, C ≈ 150 (!)

Mueller, Shoshi (04); E.I., Mueller, Munier (04)

■ An exact result in QCD in the limit αs → 0

... but pretty useless for practical applications !

■ Fluctuations are parametrically more important than

the NLO BFKL corrections
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Front diffusion & Geometric scaling violations

■ The position ρs(Y ) of the front shows a diffusive wandering :

〈ρs(Y )〉 = λsᾱsY, 〈ρ2
s〉 − 〈ρs〉

2 = DᾱsY, D ∼
1

ln3(1/α2
s)

■ For a given stochastic realization: T (ρ, Y ) ' F (ρ− ρs(Y ))

■ For the average amplitude: 〈T (ρ, Y )〉 ' F
(

ρ−〈ρs(Y )〉√
D ᾱsY

)
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The breakdown of the BFKL approximation

■ In the MFA (BFKL) : 〈T 2〉 ≈ 〈T 〉〈T 〉 in the tail

■ In the presence of fluctuations : 〈T 〉 ≈ 〈T 2〉 · · · ≈ 〈T n〉
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■ The dynamics of the tail is dominated by rare fluctuations
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Conclusions & Open questions

■ QCD evolution at high energy: Classical stochastic process

◆ particle number fluctuations
◆ non–linear effects =⇒ gluon saturation
◆ unitarization of scattering amplitudes
◆ geometric scaling and its violations

■ Strong sensitivity to fluctuations in the low–density regime

■ Universality of the asymptotic (high–energy and weak
coupling) behaviour

■ Relation to problems in statistical physics, chemistry, biology

■ How to go beyond asymptotics ?

◆ What are the relevant evolution equations ?

(see next talks by Triantafyllopoulos, Lublinsky, Hatta )
◆ How to solve these equations ?

(see the talk by G. Soyez)
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